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Abstract. The Penrosetwistor theory is very close to integral geometryin the
senseof Gelfandboth in theway it statesits problemsandin the way it usesits
technicalmeans.Actually,onecan considerthePenrosetransformas an analogue
of theRadon-Johntransformfor a-cohomologies.However,thereareother com-
mon points, and their close scrutiny is very instructive for both theories. For
example,the studyof curved twistor manifolds [1] is very similar to integral
geometryof the manifold of curves [2 - 4]. In this paperwepresenta revie’w
of severalsuch (boundary)questions.All considerationaremadeovera.

1. Integral geometry for lines in UP3. We start by reminding some simple

facts from the integral geometryin projective space(for more detailssee [5]).
Introducinghomogeneouscoordinatesz = (z

0, z1, z2, .z3) into (Jp3 let us define

lines by pairs of points (w, v). We definean integral transformationon sections
f of the (smooth)bundleO(— 2) x O(— 2) over UP

3, i.e. actuallyon homogeneous
functionsf(z, 2) of bi-degree(— 2, — 2). Let

(1) f(w,v)= f(r
0w+r1u)a(r)Aa(a-),1ar’

7

where
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ci(r)=—r
0dr1+r1dr0.

We use the fact that the integrandcan be consideredas definedon and

that f can be interpretedas a section of a linear bundle overthe Grassmannian
G24

f(gw, gv) = detg ~
2f~w, v), g E GL(4, C).

In that constructionone can replacethe bundleO(— 2) by any bundle O(— k),

k > 2. The integrandin (1) has then to be augmentedby a monomialin r ,i~of

bi-degree(k 2, k — 2), e.g. 2k—2) The invariant point of view requires
considerationof all monomialsand interpretsfasa spinor field.

The image of the transformationf is describedby a systemof differential

equations

a2! a2! —

(2) ~..f= — =0, ~..f =0,0~i<j~3
~‘ aw~av

1 aw1av1

The homogenuitycondition implies that one can consideronly one pair of
indices (i, /).

The centralrole in that theory is playedby the Gelfand-Graev-Shapirooperator
x [6]. It takes functions dependingon (w, v) into (I, 0)-form dependingon v

with coefficientsdependingon w:

aF(w, v)
(3) F(w,v)-+?~~F=~ dv1.

~ aW1

Equations(2) imply that the form x~fis a-closed,and,respectively,that the

(1, 1)-form (, A 5~ )f is closedon U~\ {w}. We have

(4) (x~A ~ )f= c(y)f(w)

for any 2-dimensional(over IR) cycle in U
4 \ {w}. The coefficient c(y) depends

only on y, doesnot dependon f and, in general,doesnot vanish. Therefore,

the operator ~ provides a seriesof inversion formulas which are different for

different choice of a cycle y. Hence one can view formula (4) as a universal
inversion formula for the integral transformation(I). The correspondingformulas

for k > 2 are written in the sameway.

2. The Penrosetransform and its inversion. In this sectionwe follow [7, 8].
Following Penrose,considerdomain of positiveandnegativetwistors
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(5) H(z) = z0 2 + z1 2 ~ 2 —123 I 2 ~

in L1’
3 and their common boundary ~, the surfaceof null twistors. Domains

are 1-linearly concave,i.e. they coincide with theunion of lines containedin
them. The manifold of lines containedin D~ is biholomorphicallyequivalent

to the tube of the future T~,and the lines lying on E correspondto the Shilov
boundaryof that domain(compactifiedMinkowsky space).

Considerthe spacec~°1 ~ O(— k)), k > 2, of (0, 1)-formsin D÷with
coefficientsin the fibres of the bundle O(— k) (i.e. homogeneousin z of degree
— k). If a line £ (w, v) going through the points w, v lies in then for any
pEC~0’‘~(D~,O(—k))let

(6) ~(w, v) = f~iZ=T5W+7~O ~ a(r)(r
0~

2.

Consideringonly 8-closedforms p (p E Z~°’1 ~ O(—k))), one hasa holo-
morphic function ~(w, v). For k = 2 it can be interpretedas a sectionof a linear

bundle over T~; and for k> 2 over the flag manifold (v, Q(w, u)), ~ C D~.The

kernel of the mapping p —~ ~ consistsexactly of 8-exact forms (p E B~°’1))

The Penrosetransformis the inducedmappingon the cohomologyspacejj’(O~1)

(D~,O(— k)). It turns out that the inversion formula for it canalso be written

in termsof the operatorx : F —÷ ~ a/aw
1dv1.

Let be the manifold of pairs (w, v) for which the line ~!(w, v) lies in

andconsiderthe sectionF of the bundle -+ D+.

THEOREM [7,8].For~EZ~°’ ‘~(D~,O(—k)) theform

(7) ~x~Ir~°’’~~P

is a-exact. U

In (7) one takesa (0, 1)-componentof the restriction of the form ,c~on to

section F definedon D~. The result is a (0, 1)-form on D~.Note that x~’is
a closedform on D+ since, as one can easily checkdirectly from (6), ~ satisfies

thesystemof equations{~~ = 0~.
The result is the inverse Penrosetransform. By taking different sectionsF

one has different representativesof a cohomology classof the form p. In our

view formula (7) showsa very important fact: in a senseone obtainsa holomor-
phic continuationof one-dimensional3-cohomologiesin the form of holomorphic
forms on the Stein manifold with fibres overD+. Non-holornorphicproperty

p isconnectedonly with the non-holoniorphicpropertyof sectionF. Holomorphic
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form x ~ providesa very full characterisationof the cohomology class ~ andin

a number of problems (continuation, uniqueness,etc.) it makes it possible to

apply the tools of holomorphicanalysisto the study of higher 8-cohomologies.

A similar inversion formula is also valid for the inverse Penrosetransform

defined on a~-cohoInologieson the boundary ~. Note that for that formula

a specific form of the domain D~ is not important, the only fact is that it is

I-linearly concave(see [7]), i.e. that they coincide with unions of linescontained

in them.

3. Some explicit formulas. We give two explicit formulas for the Penrose

transform inspired by integral geometry. We start by the formula which recon-

structs the Penrosetransform ~ by the boundaryvaluesof ~ on = aD+ . We

give the formula fork = 3 when it especiallysimple. Let pEZ~
0’~ , O(— 3)).

Then

i r ~OA[Z,dS,dZ,dZ]A[U,Z,v,dU]
(8) ~(w, v) = _______ __________________________

(27ri)23! J [ii’, z, U, v]2
F (~)

Here [a
1, a2, a3, a4 I denotesthe determinantwith columnsa1, someof which

may be 1-forms. Computing a determinantone takesskew productsof them,

so that a non-zerodeterminantmay haveidentical columnsof 1-forms. Now we

considera bundle ~ —~~ over the boundary ~ where ~ consistsof suchpairs

(z, u), z E ~, u E D for which the line Q(z, w) belongsto ~ (lies outsideD~).

The integral can be taken over any sectionF(s) of that bundle (for different

sectionsthe integratedforms differ by an exact one which doesnot affect the

value of the integral). Consider the expression~w, z, u, vi in the denominator.

It vanishesif andonly if the lines 2(z, u) and~(ti’, v) intersect.(This is an analogue

of the Cauchy kernel for a pair of lines). For k > 3 there is a similar but more

complicatedformula [9]. The reasonis that one hasto considera Leray residual

classfor a polar singularity of higherorderandto fix a representativeof theclass

one has to introduce an additional structure (for k = 3 there is a pole of order

1 and a canonicalresidualform).

Starting with the formula (8) one can obtain a formula reconstructingthe

formx ~ by the boundaryvaluesof p:

1 ( ~ A [z, dz, dz, dz] A [u, z, v, du] A [v, z, u, dv]
(9) xçc= I

(2iri)
33 J [w, z, u,

F(s)

That formula can be naturally interpreted as a formula that reconstructs

the cohomology class from H~°”~(D~,O(— 3)) from boundary values.To get
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the form cohomologicalto p it is sufficient to restrict the right-handside in v

to a section F(D~)of the bundle D~ -+ and take the (0, 1)-component.
An essentialthing, in our point of view, is that the formula (9) doesnot recon-
struct the cohomologyclassbut its holomorphic<<continuation>>to Forthat
reason one can work with integral formula with holomorphickernel which is

very convenientin analyticalconsiderations.
Complex integral formulas are closely connected with integral geometry.

Thus, the Cauchy-Fantappie-Lerayformula is a preciseanalougeof the inversion
formula for the Radon transform(see discussionin [9]). Formulasof this section

havealsotheir analougesin realintegralgeometry[9].

4. Integral geometry for 4-parameter families of curves on 3-dimensional

manifolds. In the curved versionof the Penrosetwistor theory [1] an important

role is played by such 4-parameterfamilies of curvesE~,~ C on a 3-dimen-

sional manifold X that the intersectionrelation of curves induces a conformal
metrix on (which is automatically self dual). More precisely, to x C X one
assignstwo-dimensionalsubmanifoldsS,~C Z : ~C S, ~x E E~.Tangentplanes

to S,~form a cone C T~Z. It is requiredthat shouldbe quadratic.
Then besidesthe family of of-planeson yE tangentto S, thereis onemore family

of planescalled ~3-planes.Each of those families is parametrisedby points of a
projective line. Parametrisationof the family of cr-planesmakes it possibleto

continue the curves EE canonically to global rational curves with the normal

bundle 0(1) ~ 0(1). Conversely, for such a family of rational curvesthe cones

V
1 are quadratic.
It turnsout that thesame families of curvesplay an exceptionalrole in integral

geometry. It is precisely those families of curves for which there exist a local

inversion formula of the form (4). A convenientway is to rewrite formula for

lines (section 1) in affine coordinatesin such a way that it preservesprojective
invariance.

Considerthesetof lines z= at + ~3,z, o~j3C~‘~,tC U’, in ~I~and let

(10) f(aj3)= f(ctt+13)dtAdt.

The operator

aF aF
(11) ~ :F(a,~)-~ — +c— da.-i-FdcI —w

W a~1 ac~ ‘

taking functions dependingon (a, i3) into (1, 0)-forms on themanifold of pairs
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(a, c), c C U~takeseach function of the form f(a, f3) into a-closedforms. Here

a are coordinateson the manifold of lines with (3 = w and c is an additional

variable which in the final formula may be consideredasarbitrarily depending

on a. Formula (11) involves differentiation alonga family of lines going through

the point on the line z = at + w for the parametervalue t = — 1/c where the
point c can be chosenindependentlyfor different a. As a result (‘ç A

is a closedform andonehasthe inversionformula (4).

Let now the cones V
1 on the manifold of curvesbe quadratic,let w be a fixed

point in X and S~be the corresponding2-dimensionalsubmanifold in Z. Let
~ E S and denoteby c~the a-plane on V1 correspondingto w (the tangent

plane to S~%).To eachpoint c E F1 therecorrespondsan a-plane a~C V1. Let
be a linear operatorfrom a0 into which leaveseachvector in its /3-plane.

Suchan operatoris definedup to a scalarmultiple. Let

(12) x~F(~r)=dF(~L~r)+FO,

where the value of the form F on a vector r is the sum of the value of the
differential on the vector r E ct~and of the constantform 0 multiplied by

F. We have given the structure of operatorx~ but it remainsto specify the

measurewith respect to which integrals over curves in are taken. There is

a canonicalprojective structureon F1. Fix an affinisation by specifyinga sub-

manifold A of <<infinite points>> E1 on X, dim A = 2. Then the affine measure

is defined up to a scalarmultiple which can be normalisedby choosinganaffine

parametert on F1 in such a way that in a neighbourhoodof it on F1 one has

z = at + f3t + 0(1). For anotherpoint w onehasa coefficientwhich is a function

dependingon ~. Thus,f(s) = / f dt A dt for all f E C0 (X). Then for an appro-

priate (1, 0)-form 0 the form
x 7 on S xff’

W W C

is a-closed.The form 0 can easily be describedexplicitly but that will not be

consideredhere.The proof is basedentirely on the fact that a conformalmetrix

is equivalentto a flat onein a neighbourhoodof eachpointup to the third order.
Hencefor each family of rational curves with the bundle 0(1) ~ 0(1) thereis an

inversionformula of the form (4).
Now a few words about the necessityof that condition. In [10] a genoral

problem of the existenceof a local inversion formula for theproblemof integral

geometryon curvesis studied. It is assumedthat all curvesof Eareparametrised

and that densities ~t’(t;~ ) are defined on then so that for eachf E Ce”’ (X) the
integrals
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Y(~)=ff1 ~(t;~)I2dtA~i

are defined. We investigatewhen thereexistsa differential operatorof the first
order ~ acting from the setof functions on Z into (1, 0)-formson S~,for which
the form ~ f is a-closed.The structureof such operatorscan be completely

described. For dimensions consideredhere one of the main results can be re-

formulated in the following way. The operatorx~,is of the form (12) where
is replacedby a linear operatorL acting from a

0 into T1Zsuchthat for each
C a0 the plane -r, LT intersectsall a-planes.It meansthat that planebelongs

entirely to V1 and that eachvector r C a0 is containedin a planeon V1 which

does not belong to a family of a-planes(i.e. a (3-plane). Thus thereexist two
families of 2-dimensionalplaneson V1 which implies that the cone V1 is quadra-
tic, and that L mapsa0 on an a-plane. Paper[10] also studiesconditions the

family of densitieshas to satisfy under which the form (x~ A is closed.

5. Integral geometry for manifolds of rational curves. As we have already
noted, the paper [10] studiesthe structureof the operatorx~which provides
an inversion formula for any family of curves(with any numberof parameters

and on a manifold of any dimension). With the useof that descriptionthepaper

[2] shows that any manifold of curvesfor which suchan operator existsis ne-

cessarily(after an appropriate continuation of curves) a full family of rational

curves.It is full in the following sense.
Considerthe space of sectionsof the normal bundle to the curve E1 (infi-

nitesimaldeformations)which are continuedto local deformationsof the curve.

That spaceis requiredto coincide with the set of all sectionsof a vectorbundle
over F1 UP

1. The central point of the proof is the fact that the intersection

relation on full manifolds of rational curves inducesa conformal structureof
high order i.e. a generalisationof the conformal 4-metrix. We now describe

those structures. A generalisedconformal structure is defined by a cone. To

manifolds of rational curves there correspondcones V(k 1 k) C ff’~defined

by ~-tuples of integersk = (k
1,.., k2), k1 ~ . . ~ 0,~k1=n—~.The

cone~(k’) in the coordinatespace(x~.),1 ~ i ~ 2, 0 ~/ s~k., is a unionof planes
a(r ),r =(r0,r1)ofcodimension2:

rkixl +rki_1r x
1 + +rk~xI ~0

0 0 0 11 1 k
1

(13)

T~2X~+ T’~~1rX ~ + .. . + T~’QX~= 0.
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where the coefficient before the coordinatex equals r~i1 r
1

1. We have the
family of planes parametrisedby points of projectiveline UP

1. Its union is de-

noted by V(k). A remarkablefact is that besides the family of a-planesthereis

one more family of 2-dimensionalplanes/3(u) on ~(k) parametrised by points

of the projective space~

1p~Q• Denote the homogenouscoordinatesu by u~

where,as above, 1 ~ I ~ 2 but 0 ‘(j ~ k. — 1. Then /3(u) consistsof the points

x with the coordinates

(14) x;(r)=r0u;1 —r1u, x~(r)Ea(r),

where (r0, r1 ) are coordinateson /3(u). Under somenatural assumptionsV(k)
is a unique family of conescontaining two families of planes one of which

is two-dimensional.
Let us say that a ~(k)-structure is given on a manifold ~, dim = n, if in

eachtangentspacea cone V1 linearly equivalent to Vk is specified.That structure

is called integrableif the distribution of a-planesis integrable,i.e. if thereexists

such a family of submanifolds S~that all the tangentplanesto S~area-planes

and eacha-planesis tangent to some S~.The manifold X of parametersz (evi-

dently, dim X = 2 + 1) is called the twistor manifold for an integrable ~k -

structureand the points of correspondto curves on X. For n = 4, k1 =

= k2 = 1 one hasthePenroseconstruction.

The projective structureon the family of a-planesin V1 V(k) induceslocally
the structureof a rational curve on thecurvesof .E If k2 > 0 on hasa full family

of rational curves(globally).

For k2 = . . . = k~= 0 the situation is more complicated.A ~(k)-structure

is flat if = U~,andthe cones V1 V(k) are obtainedone from anotherby

a shift. In that case Z is realised as a space of all sectionsof the bundle

0(k1) e . . O(k~)on UP
1 . If k~> 0, then every ~(k )-structure in a neigh-

bourhoodof a point is equivalent up to the 3d order to a flat structure.That
statementmay be consideredas an analogueof the classicalDesarguestheorem
of projective geometry.For k

2 = . . . = k~= 0 that conditionhasto be imposed
and then one has a full family of rational curves on the twistor manifold X.
The Desarguescondition can be elegantly written in the analytical form [3].

The situation is similar to that in the projective geometry:on the projective

plane the Desarguescondition is taken for an axiom while in the spaceof higher
dimensionit is proved.

Conversely,let be a full manifold of rationalcurvesF1 on X, dim X = 2 + I.

Considera generalisedconformal structure on induced by the intersection

relation of curves. Then the cones V1 arising in the tangentspacesare linearly

equivalent to the cone V(k) for some (k1,..., ku). It is an immediatecon-
sequenceof the Grothendiecktheorem describingthestructureof vector bundles
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over a projective line. The reason is that vectorsof the tangentspaceT1~cor-

respondto sectionsof the normalbundleoverF1 UP’
For integral geometry on families of rational curves all the considerations

repeat the reasoningof section4: the operatorx~is of the form (12) sincewe
have/3-planes,and one takesaffme densitieson F1 correspondingto the canonical

projectivestructure on them. The guidelinescia conversereasoning:the descrip-
tion of admissible operatorsx in [10] implies the necessityof the existance

of 2-dimensional/3-planeson V,, and,consequently,of a ~l(k)-structure on E1.

Now a few words about the relation to non-linear differential equations.

If a ~(k)-structure is givenon the manifold then the distribution of a-planes

is given by the system of linear differential equationsof the first order with

the rational parameterT:

rk0, w~+ . . - + = 0

(16) ...

where {w} is a full family of (1, 0)-forms. The integrability condition for that

system is a non-linear differential equation on its coefficients. The ideology
of the inverse scatteringproblem approachis that many non-linear differen-
tial equationsadmit sucha representation(as an (L, A )-pair): asa compatibility
condition for a system of linear differential equationswith rational (spectral)

parameterr. For example,for n = 4, k1 = k2 = 1 we have the equationof
self-duality for a conformal4-metrix.

Solutionsof such a non-linearsystemcorrespondto integrablelinear systems

with a parameter.The twistor ideology in that situation can be explainedin the

following way: to each integrablesystem (16) there correspondsa full system
of rational curves E1 on the twistor manifold X. Thus, insteadof constructing

integrablesystems(16) we can constructfamilies of rational curves. It is, there-

fore, important to develop a technique for constructing a sufficient supply
of suchfamilies.

6. Reductionsof manifolds of rationalcurves.For a self-dualmetrix Penrose
hasproposed[I] the following constructionwhich canbe usedfor any k. Consi-

der a <<flat>> family: the set of sectionsof the vector bundle 0(k1) ~ . . . ~ O(kQ)

on UP’ . It turns out that if one considersa perturbedcomplexstructurein the

total spaceof the bundle,then the perturbedmanifoldwill alsohavea full family
of rationalcurveswith the samenormal bundle.

In geometrynew structuresare usually obtainedeither by perturbing a flat
one or by restricting multidimensional (e.g. flat) structuresto submanifolds
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of lesserdimension.

Evidently, a restriction of a ~(k)-structure to a submanifold is no longer

a ~i(k)-structure. It turns out, however,that one can fully describethosesub-
manifolds on which there arisesan induced ~(k )-structure [2, 3]. Let Z be a

manifold with an integrable ~k )~structure.Then canbe realisedas a full system

of rational curves El on some manifold X. We are interestedin the question
on which submanifoldsH C Z there is an induced ~~(k)-structure, or, equiva-

lently, which subfamiliesof rational curves H C are full,. We give two ways

of specifyinga subfamily of curves:

(i) fix a submanifoldF C X, codirn F> 1 andconsiderthe subfamily Z(F) C Z
of curvesintersectingF;

(ii) fix a submanifoldS C X, codim F = I, and considera subfamily Z(S)

of all curvesF1 tangentto S.

THEOREM. Any subfamily of curves H in a full family of rational curves

F1 definedby a setof conditionsof the form (i), (ii) isfull (i.e. there isan indu-

ced ~
1~k)structure on H). Any full subfamily in a generalposition can be de-

fined by a setof suchconditions (*)•

In fact one can fully describefull subfamiliesH C of rational curveswithout

assumingthat they are in generalposition. Such a descriptionusesthe language

of a-processes[2, 3].
The abovetheoremmakesit possibleto constructa largenumberof examples.

For example, it automatically solves the problems: for which families of lines

or conical sections the problem of integral geometryhas a local solution, for
what 4-parameterfamilies of conical sections in ~tP3 the intersectionrelation
induces a conformal self-dual4-metrix. In the latter one hasto impose4 condi-

tions of intersectionwith a fixed curve F, or of being tangentto a fixed surface
S(in generalposition thereare no otherexamples).

Now a few words about the proof. We are interestedin such submanifolds

fl C for which T
1 H fl V1 is again a coneof the family V(k). The integrability

condition is, evidently, again valid. Therefore,the first task is to find those

planes(it is sufficient to find hyperplanes)which in the intersectionwhith V(k)
give a cone of the same class.This is a linear algebraproblem and it turns out
that a hyperplanehas to contain an a-plane (which is a necessaryand sufficient

(*) Notice that the dimensionality of the twistor manifold X does not decreasein the
course of this procedure.In contrast to the Penroseconstructioknthe complex structure
on Xis not changedbutsomebirantionaltransformationis performedby the way.
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condition). One obtains an algebraicsystemof equationson the parametersof

a hyperplanewhich results in an explicit systemof non-lineardifferentialequa-

tions on II. It turns out that the systemcan be integratedexactlyby a genera-
lisation of the Hamilton-Jacobimethod, and the result is given by the above

theorem.Points of submanifoldsF, S correspondto generalisedbi-characteristics
which are combined into a solution by a rather complicatedglueing together
procedure(formulated,in general,in the a-processeslangauge).An interesting

fact is that it is more convenient to study the differential equation on a full

subfamily of rational curvesin the languageof the manifold Z, but the result is

more convenientlyformulatedin the twistor language.
In our view, the classof ~k )~structuresis very interestinganddeservesa more

close study. Herewe havediscussedonly restrictionsof thesestructures.Another

interesting questionis that of embeddingof manifolds having those structures

into manifolds of higher dimensionwith a flat ~(k)-5tructure. An interesting
observationhas been made by A.B. Goncharov(private communication):pro-
jectivisationsU(k) of the conesV~’k),dual to the conesV(k) arealgebraicvaria-
ties of minimal degree(they have the minimal possibledegreeamong algebraic

varietiesof given dimensionin UP’
2 — 1)~The other examplesof varietiesof mini-

mal degree are quadrics (they correspondto usual conformal structures).The

only other exampleis given by the Veronesesurfacein (1P5 and the coneover
it (by the Enriquestheorem).Thus usualconformalstructuresand eI~k)-structu-

reshavean exceptionalposition amonggeneralisedconformalstructures.

7. Generalisedmetric structuresassociatedto ~1(k )~structures.A problem
of constructing an integrable ~(k )_structure (i.e. a full manifold of rational

curves) is often a part of some problem of mathematicalphysics. Thus, the
problem about self-dual conformal 4-metrices is only a part of the problem

aboutright flat 4-metrices(self-dualsolutionsof the vacuumEinsteinequation).
It is then important to specify a geometricstructurecorrespondingto the full
problem which is an extensionof the ~k)-structure. Such an extensionwill
be called a generalisedmetric structure.An extensionof any individual structure
can be effected in different ways. If our aim is to constructsolutions by re-

stricting multidimensionalstructures,one hasto considera compatibleextension
of the whole seriesof generalisedconformal structures.

For example,a 4-dimensionalmetnx can,of course,be extendedto a complex
4-metrix on Z but that extensionis not continued to other 9ô(k )~structures.

In [ 2, 11] anotherextensionin the form of a bundle of 2-forms is proposed.
Thus,a self-dual4-metrix correspondsto anintegrablesystem
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1i.._.~_ 1 1 —W ~.~—T
0C&)0 rT1W, —

(17)
w

2(r)=r
0w~ +r~w~1=0.

Considera quadraticbundleof 2-form

(18) F(r) = c~)(r)A w
2(r).

The condition

(19) dF(r)=0

for all r is a strongerone that the integrability condition of the system(17)

for all r andit ensuresthat the metrix

(20) g=w~~w~—w~w~

satisfies the vacuum Einstein equation.Thus, the self-dual Einstein equation

is equivalent to the following systemof conditionson a quadraticbundle of
2-forms:

(i) F(r)AF(r)=0

(21) (ii) F(r) it. F(a) ~ 0 if r ~ Xo

(iii) dF(r) = 0.

Condition (i) ensuresthat the bundle can be representedin the form (18) and

condition (ii) implies completenessof the systemof the forms w~,(non-dege-
neracyof the metrix).

Despite the fact that intestigationof the bundleF(r) is equivalentto the study
of the metrix g, it is anothergeometricalstructure.For the metrix the gauge

groupis S0(4) SL(2) x SL(2). A right flat metrix, in a natural senseis flat

with respect to one of the factors SL(2). Going from g to F(r) we reducethe
gaugegroup S0(4) to that factor: for F(r) the gaugetransformationsinclude
only projectivetransformationof the parameter(r

0 , r,).

Considernow similar multidimensionalconstructions.Note that the description

of the induced
91’(k )-structuresgiven in the precedingsection doesnot affect

2, i.e. to obtain a 4-metrix onehasto consideron ~, dim Z = k
1 + k2 + 2 system

of the form

w’(r)=r~1w~+...+r’~1w,~, =0,

w
2(r) = T~f w~+.. . + T~2 wk = 0.

Taking F(T) defined by formula (18) let us require that it satisfies(20). Then

the ~(k ~, k, )~structureis integrableand the correspondingbundle of 2-forms
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F(r) of degree k, + k2 will be called a correspondingmetric structure.Then

F(T) satisfies(1), (ii) from (21).

Let now a ~,, )~structure(conformal metrix) be inducedon H C ~, dim

U = 4. Restricting F(r) to II one obtains a bundle of 2-formssatisfying(21),
howeverits degreein r equalsk1 + k2. The factthat we haveobtaineda ~(1

structureon H implies that

(23) F(T)= ~(r,~)F(r)

where F(r) is a quadratic bundle of 2-forms on H and the function ~,1i(r,~),

~ C H is a homogeneouspolynomial in r of degreek, + k2. ThenF satisfies

conditions (I), (ii) in (21), but, in general,doesnot satisfy (19). Note that the
function i,li is definedup to a factor dependingon ~ C II. One has to impose

specialconditionson submariifoldsF,, S~which have to be tangentto I intersect
curvesfrom ~ in order for the formF(r) to be closedfor some ~i.

Suppose that a system(22) correspondsto a flat structure. Thenw) =

where are coordinateson andF1 is of the form

z’(r)=~ TkQI ~ T1~

22(1) = ~ r~0z+ . . + ~‘~2 T
1~~

where (z1, z2, r
0, r1) are homogeneouscoordinateson the twistor manifold

X which is the total space of the bundle 0(k1) a 0(k2) on UP’. We have to
imposek1 + k2 — 2 tangency-intersectionconditions.Let us showtwo situations

when one can preservethe fact that F(r) = dz
1(r) A dz2(r) is closed. First,

if eachof the curvesF
1, . - . , Fk + k 2 in X lies over the samepoint UP’ (i.e.

for ar0 — br1 = 0 with constanta, b) then ~i dependsonly on r anddoesnot

dependon ~ C andhencethe fact that F(r) is closedis inheritedby the forms
F(r). That fact alone already provides some interestingexamples[2, 4, 12].

However,thosesolutionshavesingularities.
The secondconstructionlends to non-singularsolutions. It involves the tan-

gency conditionsfor submanifoldsS~satisfying somestrongglobal compatibility

conditions.Adding one more variable w, let P(w, z
1, z2, r

0, r1) = w~~+. . . be

a polynomial of weighted degreemr’ where one ascribes the weights m, k1,
k2, 1, 1 to the variablesw, z

1, z2, r
0, r1 respectively.Let H be a submanifold

of curvesof the form (24) in which can be lifted to submanifold = {P = 0}

andlet w(r) be a fixed lifting (*)~Considera function

(*) Thoseare tangencyconditions for projectionsof the branchingmanifolds E~,to X.
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D(w,z,r)__U (w—w1)

on where the productis takenoverall rootsw. of the polynomialP conjugate
to w. Let now mn(v — 1) = k1 + k2 — 2 and supposethat II is non-empty.Then

(25) F(r) = F(r) In / D(w(r), z’ ( r), z2~v), r)

is a closed form. Condition (25) imposesvery strongrestrictionson the degree

of P: k1 + k., ~ deg P ~ 2k, + 2k2 — 4. However,some possibilitiesremain:

for k, = k2, in = 2 there are solutions constructedin [13]. Other examples
can also be considered.It would be interestingto investigatewhat setof solutions

can be suppliedby such a construction.Can oneobtain in that way all asympto-

tically locally Euclideansolutionsof the self-dualEinsteinesuation?
Those considerationsmay be generalised to the problem of constructing

Hyper-Kahler metrices. For the corresponding~(k )-structure 2 = 2m, k1 =

= . = k2,~= 1, and the generalisedmetric structureis given by a bundle of
2-forms

F(r) = w’ (r) A c~,

2(T) + . + ~2n —1 (>~)~ w2~’(r)

w’(r) = r
0w~+ T1W~.

If dF(r) = 0 then

~ _W~m_lW~m)

is a Hyper-Kahlermetrix. A bundle of forms is introducedin a similar fashion
if w’(r)= r~!w~f+ . . . + r~/w~.

The problem of restricting th~sestructuresto submanifoldsis considered

asabovefor ni = 1 (right flat metrix).
Similarly to the caseIll = I one can constructexamplesof metricesby consi-

dering curves F1 lying over fixed points of U~P~. However, we haveunable to
obtain an analogue of the second construction involving lifting of the curves

for in > 1.

8. Generalisedconformal structuresassociatedto the problems of integral
geometryfor submanifoldsof dimensiongreaterthan 1. The caseof submanifolds

of dimension greater that one is consideredin integral geometry only in less

generalsituations.In those problemsit is natural to follow somebasicexamples.

We remind the readerthat integral geometryin that casestemsfrom the following

observation.Derivation of the Plancherelformula for thegroup SL(2, IT)in [16]
is entirely basedon reconstructinga function f in ~ from its integralsover lines
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intersectinga hyperbola.An explicit local formula hasbeenfound solving that
problem. Later it turned out that one can replacethe hyperbolaby an arbitrary

curve, and the local formula inversionstill exists. Then all manifolds of lines in

general position have been found for which such a formula existsand the role

of tangency-intersectionconditions in their description hasbeen clarified. That

line of researchhasbeen completed by describingthe generalform of operator
x on full manifoldsof rational curves. It turnedout that many factsof the har-

monic analysis on SL(2; UT) may be transferredto such a non-homogeneous
situation.

In [17] it has been shown that the problem about the Plancherelformula

for any complex semi-simple Lie groups is also reducedto a problem of inte-

gral geometry.For eachsuch groupG one considersthe manifold of orispheres,

i.e. two-sided shifts of a maximal unipotent subgroup.The problem is to re-

construct a function on the group if its integralsoverorispheresare given. I.M.

Gelfand has repeatedlyformulatedthe problem of finding an inversionformula
for somefamiliesof submanifolds,including, in particular, familiesof orispheres

on complex semi-simple Lie groups. In the paper [5] which we have already
cited above, a differential operator~ is constructredtaking an integral f over

planesof dimensionp into a closedform on the manifold of planesgoing through
the pointw. For p = lit is describedin section1. In the generalcaseoneobtains
different inversion formulas by integratingthat formx~f overdifferent cycles.
For the groupSL(n, UT) orispherescan be interpretedasplanesand the operator

~ providesaninversionformula for the family of orispheres.
In the case of othergroups orispheresare in fact curved.Recently,the author

has beenable [181 to constructoperatorx for curved submanifoldswhich made

it possible in particular, to derive an inversion formula for orisphereson any
group from the generalresultsof integralgeometry.

At the same time one obtainsinversion formulasfor families of submanifolds
that are not relatedto groups.The main point here is the existanceof a remar-

kable generalisedconformal structureon the manifold of orispheresfor any

semi-simpleLie group. As in section4 we constructincidenceconesV
1 C T1Z

on the manifold of orispheresZ by considering submanifoldsof orispheres
C going throughg C G and by taking for each~C the union of tangent

planesUg to Sg for ~ ~. Those conesturn out to havea very simple structure

which is in manyrespectsgeneralfor all groups.
Namely, there is a family ~ of one-dimensionalsubspaceson V1 lying in the

same two-dimensionalsubspace;for each line from thereis a one-parameter
family of two-dimensionalsubspaces~, going throughit and lying in the same
3-dimensionalsubspaceetc. For each k-dimensionalsubspacefrom the family

thereis a one-dimensionalfamily of (k + I )-dimensionalsubspacecontaining
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it and lying in a (k + 2)-dimensionalsubspace,and so on up to dimensionSg~

The unionof thosesubspacegives the cone V
1.

A further analysis shows that if on a family of submanifoldsE1 C X the

incidenceconesV1 are of that form and if thecorrespondingconformalstructure

is equivalent to aflat one up to the third order, then onecandefine theoperator

~ giving an inversion formula. It would be interestingto investigatethosestruc-

tures and the plane of those among them that correspondto groups. The in-

ductive characterof V1 is a geometricexpressionof the group root structure.
Summarizing,one can say thatan importantrole in integralgeometryis played

by generalisedconformal structures.In the integrable caseone hasan incidence

relation between the manifold of submanifoldsF1, and the (twistor)manifold

X in which F1 lie. That incidencerelation is convenientlyexpressedin the lan-

guageof doublefibrations

where A is the manifold of pairs (x, ~),x CE1. However,we believe that infinite-

simal languageof generalisedconformal structuresis in a number of questions
more effective. It would be interestingto continuethe studyof suchstructures
whichensuretheexistanceof local inversionformulas.

It would also be interestingto investigateparallelconstructionsin the theory
of non-linear differential equationswhich haveto be connectedwith the caseof

severalspectralparameters.
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