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To Izrael Moiseevich Gelfand who has educated me in integral geometry.

Abstract. The Penrose twistor theory is very close to integral geometry in the
sense of Gelfand both in the way it states its problems and in the way it uses its
technical means. Actually, one can consider the Penrose transform as an analogue
of the Radon-John transform for 5—cohomologies. However, there are other com-
mon points, and their close scrutiny is very instructive for both theories. For
example, the study of curved twistor manifolds [1] is very similar to integral
geometry of the manifold of curves [2 - 4} In this paper we present a review
of several such «boundarys questions. All consideration are made over Q.

1. Integral geometry for lines in @P3. We start by reminding some simple
facts from the integral geometry in projective space (for more details see [5]).
Introducing homogeneous coordinates z = (2, z,, z,, ) into @P? let us define
lines by pairs of points (w, v). We define an integral transformation on sections
f of the (smooth) bundle O(— 2) x O(— 2) over a3 ,1.e. actually on homogeneous
functions f(z, Z) of bi-degree (— 2, — 2). Let

(D fw, v) =f frgw + 7, 0)0(7) A 0(7),
GPl

T

where
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o(r)=—rpdr +7,d7.

We use the fact that the integrand can be considered as defined on (l‘P1 and

that f can be interpreted as a section of a linear bundle over the Grassmanma.n

G2,4 :

flgw, gv) = det g| “2flw, v), g €GL(4, O).

In that construction one can replace the bundle O(— 2) by any bundle O(— k),
k > 2. The integrand in (1) has then to be augmented by a monomial in 7,7 of
bi-degree (kK — 2,k — 2), e.g. ] T ’ 2tk=2) The invariant point of view requires
consideration of all monomials and interprets f as a spinor field.

The image of the transformation f is described by a system of differential
equations

. 3*f
) Al.].fz — = i
awiav. ow.0v, /

7 JAle

The homogenuity condition implies that one can consider only one pair of
indices (i, 7).

The central role in that theory is played by the Gelfand-Graev-Shapiro operator
x [6]. It takes functions depending on (w, v) into (I, O)form depending on v
with coefficients depending on w:

OF
(3) Fw,v)>x F= Z 0. v dv..

j
7 aw
Equations (2) imply that the form xwfis d-closed, and, respectively, that the
(1, 1)form (x,, A %, )fis closed on @ \ {w}. We have

(4) f (x,, A%, =c(r) fw)
Y

for any 2-dimensional (over IR) cycle in @* \ {w}. The coefficient c(vy) depends
only on v, does not depend on f and, in general, does not vanish. Therefore,
the operator » provides a series of inversion formulas which are different for
different choice of a cycle . Hence one can view formula (4) as a universal
inversion formula for the integral transformation (1). The corresponding formulas
for k > 2 are written in the same way.

2. The Penrose transform and its inversion. In this section we follow [7, 8].
Following Penrose, consider domain D N of positive and negative twistors
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in @P? and their common boundary X, the surface of null twistors. Domains
D_ are l-linearly concave, i.e. they coincide with the union of lines contained in
them. The manifold of lines contained in D is biholomorphically equivalent
to the tube of the future 7, and the lines lying on Z correspond to the Shilov
boundary of that domain (compactified Minkowsky space).

Consider the space C'*: (D, O(~ k)), k > 2, of (0, 1)-forms in D, with
coefficients in the fibres of the bundle O(— k) (i.e. homogeneous in z of degree
— k). If a line & (w, v) going through the points w, v lies in D then for any
e€ CO (D, , O(- k) let

(6) P(w, v) = f‘p|z=f‘,W+7,v/\ 0(1)(70)16-2.

Considering only 0-closed forms ¢ (¢ € Z(0: DD, . 0(~k))), one has a holo-
morphic function @¢(w, v). For &k = 2 it can be interpreted as a section of a linear
bundle over T ; and for k > 2 over the flag manifold (v, w, v)), 2 C D_ . The
kernel of the mapping ¢ — @ consists exactly of d-exact forms (p € B(®> 1)),
The Penrose transform is the induced mapping on the cohomology space H(0: 1)
(D o O(— k)). It tums out that the inversion formula for it can also be written
in terms~of the operatorx : FF = X a/aw,. dv]..

Let D+ be the manifold of pairs (w, ~v) for which the line 2(w, v) lies in DJr
and consider the section I" of the bundle D -D_.

THEOREM [7,8]. For g € Z\%- 1)(D , O(~ k)) the form
(7) xp| OV —p

is 0-exact. ]

In (7) one takes a (0, 1)-component of the restriction of the form »¢@ on to
section T’ defined~on 5+. The result is a (0, 1)-form on D, . Note that xQ is
a closed form on D, since, as one can easily check directly from (6), ¢ satisfies
the system of equations {Ai/. ¢ = 0;.

The result is the inverse Penrose transform. By taking different sections I'
one has different representatives of a cohomology class of the form y. In our
view formula (7) shows a very important fact: in a sense one obtains a holomor-
phic continuation of one-dimensional 5—cohomologies in the form of holomorphic
forms on the Stein manifold 5+ with fibres over D+ . Non-holomorphic property
@ is connected only with the non-holomorphic property of section I'. Holomorphic
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form » ¢ provides a very full characterisation of the cohomology class yandin
a number of problems (continuation, uniqueness, etc.) it makes it possible to
apply the tools of holomorphic analysis to the study of higher d-cohomologies.

A similar inversion formula is also valid for the inverse Penrose transform
defined on 5b-cohomologies on the boundary X. Note that for that formula
a specific form of the domain D, is not important, the only fact is that it is
ldinearly concave (see [7]), i.e. that they coincide with unions of lines contained
in them.

3. Some explicit formulas. We give two explicit formulas for the Penrose
transform inspired by integral geometry. We start by the formula which recon-
structs the Penrose transform ¢ by the boundary values of ¢ on = = 8D+. We
give the formula for £ = 3 when it especially simple. Let p € Z(0-! )(DJr , O(=3)).
Then

1 YA [z, ds, dz, dz] A [u, z, v, du]
®) oW, v) =

(27i)? 3! j [w, z, u, v]?

, r()

Here [al, a,, a,, a4] denotes the determinant with columns a;, some of which
may be l-forms. Computing a determinant one takes skew products of them,
so that a non-zero determinant may have identical columns of 1-forms. Now we
consider a bundle £ — I over-the boundary ~ where X consists of such pairs
(z, u),z € £, u € D_ for which the line 2(z, w) belongs to D_ (lies outside D, ).
The integral can be taken over any section I'(Z) of that bundle (for different
sections the integrated forms differ by an exact one which does not affect the
value of the integral). Consider the expression [w, z, u, v] in the denominator.
It vanishes if and only if the lines £(z, ©#) and &(w, v) intersect. (This is an analogue
of the Cauchy kernel for a pair of lines). For £ > 3 there is a similar but more
complicated formula [9]. The reason is that one has to consider a Leray residual
class for a polar singularity of higher order and to fix a representative of the class
one has to introduce an additional structure (for & = 3 there is a pole of order
1 and a canonical residual form).

Starting with the formula (8) one can obtain a formula reconstructing the
formx $ by the boundary values of ¢:

1 YAz dz dz, dz] A [u, z, v, du] A [v, 2, u, dv]
9) X¢ =

(i)’ 3 [w, z, u, v]?

r(z)

That formula can be naturally interpreted as a formula that reconstructs
the cohomology class from H(O’l)(D+, O(— 3)) from boundary values. To get
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the form cohomological to y it is sufficient to restrict the right-hand side in v
to a section 1"(D+) of the bundle ﬁ+ - D_ and take the (0, 1)-component.
An essential thing, in our point of view, is that the formula (9) does not recon-
struct the cohomology class but its holomorphic «continuation» to D ;- For that
reason one can work with integral formula with holomorphic kermnel which is
very convenient in analytical considerations.

Complex integral formulas are closely connected with integral geometry.
Thus, the Cauchy-Fantappié-leray formula is a precise analouge of the inversion
formula for the Radon transform (see discussion in [9]). Formulas of this section
have also their analouges in real integral geometry [9].

4. Integral geometry for 4-parameter families of curves on 3-dimensional
manifolds. In the curved version of the Penrose twistor theory [1] an important
role is played by such 4-parameter families of curves EE’ £ € E on a 3-dimen-
sional manifold X that the intersection relation of curves induces a conformal
metrix on = (which is automatically self dual). More precisely, to x € X one
assigns two-dimensional submanifolds S, CE (€S —x €E Tangent planes
o, to S, form a cone V C T . It is required that V should be quadratic.
Then bes1des the family of a—planes on V tangent to Sx there is one more family
of planes called f-planes. Each of those families is parametrised by points of a
projective line. Parametrisation of the family of a-planes makes it possible to
continue the curves E ¢ canonically to global rational curves with the normal
bundle O(1) ® O(1). Conversely, for such a family of rational curves the cones
V are quadratic.

It turns out that the same families of curves play an exceptional role in integral
geometry. It is precisely those families of curves for which there exist a local
inversion formula of the form (4). A convenient way is to rewrite formula for
lines (section 1) in affine coordinates in such a way that it preserves projective
invariance.

Consider the set of lines z=oat + 8,2, o, fE T, r € €, in 0 and let

(10) fle, B):jf(at+ﬁ) dr A dt.

The operator

oF oF
an x, Flo,B)>2 (— +¢ —|do, + F de
3 3 7

)

lg=w

taking functions depending on («, ) into (1, O)forms on the manifold of pairs
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(a, ¢), c € @ takes each function of the form f(a, B) into a-closed forms. Here
« are coordinates on the manifold of lines with 8 = w and ¢ is an additional
variable which in the final formula may be considered as arbitrarily depending
on «. Formula (11) involves differentiation along a family of lines going through
the point on the line z = or + w for the parameter value t = — 1/c where the
point ¢ can be chosen independently for different «. As a result (e, A BZW)f
is a closed form and one has the inversion formula (4).

Let now the cones VE on the manifold of curves be quadratic, let w be a fixed
point in X and Sw be the corresponding 2-dimensional submanifold in Z. Let
£ e Sw and denote by o, the a-plane on VE corresponding to w (the tangent
plane to SW). To each point ¢ € EE there corresponds an a-plane o, C Vs. Let
L. be a linear operator from o, into o, which leaves each vector in its f-plane.
Such an operator is defined up to a scalar multiple. Let

(12) x FE1)=dF(E L oT)+ FO, T €y,

where the value of the form %, F on a vector 7 is the sum of the value of the
differential on the vector L, 7 € «, and of the constant form 6 multiplied by
F. We have given the structure of operator x,, but it remains to specify the
measure with respect to which integrals over curves in E:’ are taken. There is
a canonical projective structure on Et' Fix an affinisation by specifying a sub-
manifold A of «infinite points» EE on X, dim A = 2. Then the affine measure
is defined up to a scalar multiple which can be normalised by choosing an affine
parameter ¢ on E€ in such a way that in a neighbourhood of w on Es one has
z = ot + Pt + o(t). For another point w one has a coefficient which is a function

depending on £. Thus, f(§) = fdradriforall f€ Cy(X). Then for an appro-
£y
priate (1, 0)-form @ the form

7 1
xwf on wa(l“c

is d-closed. The form 6 can easily be described explicitly but that will not be
considered here. The proof is based entirely on the fact that a conformal metrix
is equivalent to a flat onein a neighbourhood of each point up to the third order.
Hence for each family of rational curves with the bundle O(1) @ O(1) there is an
inversion formula of the form (4).

Now a few words about the necessity of that condition. In [10] a general
problem of the existence of a local inversion formula for the problem of integral
geometry on curves is studied. It is assumed that all curves of Eare parametrised
and that densities (¢ § ) are defined on then so that for each f € CS" (X) the
integrals
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f®= ff\ Y E)|2 deadr

E

are defined. We investigate when there exists a differential operator of the first
order x  acting from the set of functions on = into (1, 0)-forms on Sw for which
the form x , f is d-closed. The structure of such operators can be completely
described. For dimensions considered here one of the main results can be re-
formulated in the following way. The operator x,, is of the form (12) where
L, is replaced by a linear operator L acting from ¢ into TEE such that for each
7 € o the plane 7, L7 intersects all a-planes. It means that that plane belongs
entirely to VE and that each vector 7 € « is contained in a plane on VE which
does not belong to a family of a-planes (i.e. a -plane). Thus there exist two
families of 2-dimensional planes on Vz which implies that the cone Vt is quadra-
tic. and that L maps &, on an a-plane. Paper [10] also studies conditions the
family of densities has to satisfy under which the form (xw A ’iw)f is closed.

5. Integral geometry for manifolds of rational curves. As we have already
noted, the paper [10] studies the structure of the operator » , which provides
an inversion formula for any family of curves (with any number of parameters
and on a manifold of any dimension). With the use of that description the paper
[2] shows that any manifold of curves for which such an operator exists is ne-
cessarily (after an appropriate continuation of curves) a full family of rational
curves. It is full in the following sense. :

Consider the space of sections of the normal bundle to the curve EE (infi-
nitesimal deformations) which are continued to local deformations of the curve.
That space is required to coincide with the set of all sections of a vector bundle
over Et = @P!. The central point of the proof is the fact that the intersection
relation on full manifolds of rational curves induces a conformal structure of
high order i.e. a generalisation of the conformal 4-metrix. We now describe
those structures. A generalised conformal structure is defined by a cone. To
manifolds of rational curves there correspond cones V(k,,....k) C Q" defined
by L-tuples of integers k = (k, . .. . k), k, =z ...2k>0Z k]. =n — R The
cone V(k) in the coordinate space (x;.), 1 <i<0<ji< k., is a union of planes
o1 ), T = (19,74 ) of codimension £:

k

1 k, -1 1 ki1
TO’XO+TO‘ Tlx1+...+1'l‘x

k, =0,

(13)

ko 48 kg-1 ] ko f _
T8 Xy + T W, t ...+1'19xk2-0.



26 $.G. GINDIKIN

where the coefficient before the coordinate x]': equals T’éi‘f 7/,. We have the
family of planes parametrised by points of projective line @P!. Its union is de-
noted by V(k). A remarkable fact is that besides the family of c-planes there is
one more family of 2-dimensional planes B(u) on V(k) parametrised by points
of the projective space €P%~%. Denote the homogenous coordinates u by u]’.'
where, as above, | < i< fbut 0 <j< kl. — I. Then B(u) consists of the points
x with the coordinates

(14) xj(r)=roui_; —71 ul, x{(1) € ar),

where (TO, 1'1) are coordinates on f(u). Under some natural assumptions V(k)
is a unique family of cones containing two families of planes one of which
is two-dimensional.

Let us say that a 9’(“
each tangent space a cone VE linearly equivalent to V', is specified. That structure
is called integrable if the distribution of a-planes is integrable, i.e. if there exists
such a family of submanifolds S, that all the tangent planes to S, are o-planes
and each a-planes is tangent to some S,. The manifold X of parameters z (evi-
dently, dim X = £ + 1) is.called the twistor manifold for an integrable Qk-
structure and the points of E correspond to curves EE on X. Forn =4, k1 =

-structure is given on a manifold E, dim = = n, if in

= k2 = | one has the Penrose construction.

The projective structure on the family of a-planes in VE = V(k) induces locally
the structure of a rational curve on the curves of E If k, >0 on has a full family
of rational curves (globally).

For k2 =...= k’2 = ( the situation is more complicated. A Q(k)-structure
is flat if = = @, and the cones VE = V(k) are obtained one from another by
a shift. In that case = is realised as a space of all sections of the bundle
O(k;) e ...8 0(ky)on arl . If k, > 0, then every Q’(k)-structure in a neigh-
bourhood of a point is equivalent up to the 3d order to a flat structure. That
statement may be considered as an analogue of the classical Desargues theorem
of projective geometry. For k2 = ... =k, = 0 that condition has to be imposed
and then one has a full family of rational curves on the twistor manifold X.
The Desargues condition can be elegantly written in the analytical form [3].
The situation is similar to that in the projective geometry: on the projective
plane the Desargues condition is taken for an axiom while in the space of higher
dimension it is proved.

Conversely, let = be a full manifold of rational curves EE onX,dmX=¢+1.
Consider a generalised conformal structure on Z induced by the intersection
relation of curves. Then the cones Vg arising in the tangent spaces are linearly
equivalent to the cone V(k) for some (k1 , ..., ky). It is an immediate con-
sequence of the Grothendieck theorem describing the structure of vector bundles
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over a projective line. The reason is that vectors of the tangent space T tE cor-
respond to sections of the normal bundle over F = ar!

For integral geometry on families of rational curves all the considerations
repeat the reasoning of section 4: the operator x, is of the form (12) since we
have f-planes, and one takes affine densities on EE corresponding to the canonical
projective structure on them. The guidelines of a converse reasoning: the descrip-
tion of admissible operators x in [10] implies the necessity of the existance
of 2-dimensional S-planes on Vs’ and, consequently, of a W(k)-_structure on Et‘

Now a few words about the relation to non-linear differential equations.
If a g’(k)-structure is given on the manifold = then the distribution of c-planes
is given by the system of linear differential equations of the first order with
the rational parameter 7:

Tﬁ‘wé+...+1’;’ w}cl =0
(16)

The ot +.. .+ Tie Wl =0,

where {w]’.'} is a full family of (1, O)forms. The integrability condition for that
system is a non-linear differential equation on its coefficients. The ideology
of the inverse scattering problem approach is that many non-linear differen-
tial equations admit such a representation (as an (L, A4)-pair): as a compatibility
condition for a system of linear differential equations with rational (spectral)
parameter 7. For example, for n = 4, k;, = k, = 1 we have the equation of
self-duality for a conformal 4-metrix.

Solutions of such a non-linear system correspond to integrable linear systems
with a parameter. The twistor ideology in that situation can be explained in the
following way: to each integrable system (16) there corresponds a full system
of rational curves E ¢ On the twistor manifold X. Thus, instead of constructing
integrable systems (16) we can construct families of rational curves. It is, there-
fore, important to develop a technique for constructing a sufficient supply
of such families.

6. Reductions of manifolds of rational curves. For a self-dual metrix Penrose
has proposed [1] the following construction which can be used for any k. Consi-
der a «flat» family: the set of sections of the vector bundle O(kl)GB. L. 8 O(kg)
on @P!. It turns out that if one considers a perturbed complex structure in the
total space of the bundle, then the perturbed manifold will also have a full family
of rational curves with the same normal bundle.

In geometry new structures are usually obtained either by perturbing a flat
one or by restricting multidimensional (e.g. flat) structures to submanifolds
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of lesser dimension.

Evidently, a restriction of a g’(k)-structure to a submanifold is no longer
a Q(k)-structure. It turns out, however, that one can fully describe those sub-
manifolds on which there arises an induced 9’(,‘ y-structure [2, 3]. Let = be a
manifold with an integrable ‘Zk y-structure. Then can be realised as a full system
of rational curves Ee on some manifold X. We are interested in the question
on which submanifolds Il C = there is an induced Q(k)-structure, or, equiva-
lently, which subfamilies of rational curves I1 C = are full,. We give two ways
of specifying a subfamily of curves:

(i) fix a submanifold I' C X, codim I > 1 and consider the subfamily =(I') C =
of curves intersecting I';

(ii) fix a submanifold § C X, codim I = 1, and consider a subfamily Z(S)
of all curves Es tangent to S.

THEOREM . Any subfamily of curves Il in a full family = of rational curves
EE defined by a set of conditions of the form (i), (ii) is full (i.e. there is an indu-
ced Zk)-structure on 1) Any full subfamily in a general position can be de-
fined by a set of such conditions (*).

In fact one can fully describe full subfamilies Il C X of rational curves without
assuming that they are in general position. Such a description uses the language
of o-processes [2, 3].

The above theorem makes it possible to construct a large number of examples.
For example, it automatically solves the problems: for which families of lines
or conical sections the problem of integral geometry has a local solution, for
what 4-parameter families of conical sections in @P the intersection relation
induces a conformal self-dual 4-metrix. In the latter one has to impose 4 condi-
tions of intersection with a fixed curve I', or of being tangent to a fixed surface
S (in general position there are no other examples).

Now a few words about the proof. We are interested in such submanifolds
IT C = for which TE IIn VE is again a cone of the family V(k). The integrability
condition is, evidently, again valid. Therefore, the first task is to find those
planes (it is sufficient to find hyperplanes) which in the intersection whith V(k)
give a cone of the same class. This is a linear algebra problem and it turns out
that a hyperplane has to contain an a-plane (which is a necessary and sufficient

(*) Notice that the dimensionality of the twistor manifold X does not decrease in the
course of this procedure. In contrast to the Penrose constructiokn the complex structure
on X is not changed but some birantional transformation is performed by the way.
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condition). One obtains an algebraic system of equations on the parameters of
a hyperplane which results in an explicit system of non-linear differential equa-
tions on Il. It turns out that the system can be integrated exactly by a genera-
lisation of the Hamilton-Jacobi method, and the result is given by the above
theorem. Points of submanifolds I', S correspond to generalised bi-characteristics
which are combined into a solution by a rather complicated glueing together
procedure (formulated, in general, in the o-processes langauge). An interesting
fact is that it is more convenient to study the differential equation on a full
subfamily of rational curves in the language of the manifold E, but the result is
more conveniently formulated in the twistor language.

In our view, the class of 9@ y-structures is very interesting and deserves a more
close study. Here we have discussed only restrictions of these structures. Another
interesting question is that of embedding of manifolds having those structures
into manifolds of higher dimension with a flat W(k)-structure. An interesting
observation has been made by A.B. Goncharov (private communication): pro-
jectivisations U(k) of the cones Vz"k), dual to the cones V(k) are algebraic varia-
ties of minimal degree (they have the minimal possible degree among algebraic
varieties of given dimension in @P"~1). The other examples of varieties of mini-
mal degree are quadrics (they correspond to usual conformal structures). The
only other example is given by the Veronese surface in @° and the cone over
it (by the Enriques theorem). Thus usual conformal structures and 9’( k)-structu—
res have an exceptional position among generalised conformal structures.

7. Generalised metric structures associated to .@(k)-structures. A problem
of constructing an integrable W(k)-structure (i.e. a full manifold of rational
curves) is often a part of some problem of mathematical physics. Thus, the
problem about self-dual conformal 4-metrices is only a part of the problem
about right flat 4-metrices (self-dual solutions of the vacuum Einstein equation).
It is then important to specify a geometric structure corresponding to the full
problem which is an extension of the .@(k)-structure. Such an extension will
be called a generalised metric structure. An extension of any individual structure
can be effected in different ways. If our aim is to construct solutions by re-
stricting multidimensional structures, one has to consider a compatible extension
of the whole series of generalised conformal structures.

For example, a 4-dimensional metrix can, of course, be extended to a complex
4-metrix on Z but that extension is not continued to other .@(k )-structures.
In [ 2, 11] another extension in the form of a bundle of 2-forms is proposed.
Thus, a self-dual 4-metrix corresponds to an integrable system
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an wlE)=ryw} +7,wl =0
W)= Tow(z) + le21 = (.

Consider a quadratic bundle of 2-form

(18) F(r) = 0! (1) A w¥(1).

The condition

19) dF(t)=0

for all 7 is a stronger one that the integrability condmon of the system (17)
for all 7 and it ensures that the metrix

) g=wlel-wl o}

satisfies the vacuum Einstein equation. Thus, the self-dual Einstein equation
is equivalent to the following system of conditions on a quadratic bundle of
2-forms:

i) F@)AF(r)=0
1) (i) F(@)nF0)£0 if 7#XNo
(i) dF(r)=0

Condition (i) ensures that the bundle can be represented in the form (18) and
condition (ii) implies complete.ness of the system of the forms wj. (non-dege-
neracy of the metrix).

Despite the fact that intestigation of the bundle F(7) is equivalent to the study
of the metrix g, it is another geometrical structure. For the metrix the gauge
group is SO(4) = SL(2) x SL(2). A right flat metrix, in a natural sense is flat
with respect to one of the factors SL(2). Going from g to F(r) we reduce the
gauge group SO(4) to that factor: for F(r) the gauge transformations include
only projective transformation of the parameter (TO T ).

Consider now similar multidimensional constructions. Note that the description
of the induced g’(k)-structures given in the preceding section does not affect
€, i.e. to obtain a 4-metrix one has to consider on E, dim = = ky + k, + 2 system
of the form

w1(1)=1’61w0+...+1’1‘lw,£‘ =0,
w (‘r)—T’(;z 0+...+'r’1‘2w,%2 =0.

Taking F(r) defined by formula (18) let us require that it satisfies (20). Then
the .@(k %, yStructure is integrable and the corresponding bundle of 2-forms
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F(r) of degree k; + k, will be called a corresponding metric structure. Then
F (1) satisfies (i), (i) from (21).

let now a ?(1, 1 yStructure (conformal metrix) be induced on Il C 2, dim
IT = 4. Restricting F(r) to Il one obtains a bundle of 2-forms satisfying (21),
however its degree in 7 equals k; + k,. The fact that we have obtained a 9’(1 1)
structure on Il implies that

(23) F(r) = y(v,§) F(r)

where f(r) is a quadratic bundle of 2-forms on Il and the function ¥ (7, §),
£ € I is a homogeneous polynomial in 7 of degree k, + k,. Then F satisfies
conditions (i), (ii) in (21), but, in general, does not satisfy (19). Note that the
function y is defined up to a factor depending on ¢ € II. One has to impose
special conditions on submanifolds I';, S]. which have to be tangent to / intersect
curves from Il in order for the form F(7) to be closed for some .

_Suppo'se that a system (22) corresponds to a flat structure. Then w’f = BE;.
where {5}} are coordinates on = and E, is of the form

Zmy=gth o+ 4+ Ellc, et

() =£ o+ 4+ Eiz h

where (z!, zz, Too Tl) are homogeneous coordinates on the twistor manifold
X which is the total space of the bundle O(k,) & 0(k2) on @'. We have to
impose k; + k, — 2 tangency-intersectign conditions. Let us show two situations
when one can preserve the fact that F(7) = dzl(r) A dzz('r) is closed. First,
if each of the curves Fl, C, Fk, +k -2 in X lies over the same point ! Ge.
forar, — br, = 0 with constant a, b) then { depends only on 7 and does not
depend on ¢ € = and hence the fact that F(7) is closed is inherited by the forms
f(‘r). That fact alone already provides some interesting examples [2, 4, 12].
However, those solutions have singularities.

The second construction lends to non-singular solutions. It involves the tan-
gency conditions for submanifolds S) satisfying some strong global compatibility
conditions. Adding one more variable w, let P(w, z1, 22, Tos 11) =w’+ ... be
a polynomial of weighted degree mv where one ascribes the weights m, ki,
k,, 1, 1 to the variables w, 71, 22, Tgs T1 Tespectively. Let I1 be a submanifold
of curves of the form (24) in = which can be lifted to submanifold Ep ={P =0}
and let w(7) be a fixed lifting (*). Consider a function

(*) Those are tangency conditions for projections of the branching manifolds Zp to X.
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v—1
Dw, z, 7)= n w — w/.)
j=1

on T p Where the product is taken over all roots W, of the polynomial P conjugate
to w. Let now m(v — 1) = k, + k, — 2 and suppose that Il is non-empty. Then

(25) F(ry=F(r) |, /| Dw(r),z' (7). 2%@), 1)

is a closed form. Condition (25) imposes very strong restrictions on the degree
of P- k, +k, <deg P < 2k, + 2k, — 4. However, some possibilities remain:
for k, = k,, m = 2 there are solutions constructed in [13]. Other examples
can also be considered. It would be interesting to investigate what set of solutions
can be supplied by such a construction. Can one obtain in that way all asympto-
tically locally Euclidean solutions of the self-dual Einstein esuation?

Those considerations may be generalised to the problem of constructing
Hyper-Kahler metrices. For the corresponding ?(k y-structure £ =2m, k, =
=...= k2m = ], and the generalised metric structure is given by a bundle of
2-forms

Fir)= o' (M)A w(r)+ ...+ w2 1 (@) n w?m(r),

Ty =740+ 1 W]

If dF () = 0 then

2m _ ,2m-1,2m
1 w wy )

el 2 12 2m_1
g=(wyw] —w wy) + ...+ (wg w 1

is a Hyper-Kahler metrix. A bundle of forms is introduced in a similar fashion
fwl(r)y =1k kit . +75 i
The problem of restricting those structures to submanifolds is considered
as above for m = 1 (right flat metrix).
Similarly to the case m = 1 one can construct examples of metrices by consi-
dering curves I‘]. lying over fixed points of (I"Pi . However, we have unable to
obtain an analogue of the second construction involving lifting of the curves

for m > 1.

8. Generalised conformal structures associated to the problems of integral
geometry for submanifolds of dimension greater than 1. The case of submanifolds
of dimension greater that one is considered in integral geometry only in less
general situations. In those problems it is natural to follow some basic examples.
We remind the reader that integral geometry in that case stems from the following
observation. Derivation of the Plancherel formula for the group SL(2, €)in [16]
is entirely based on reconstructing a function f in @3 from its integrals over lines
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intersecting a hyperbola. An explicit local formula has been found solving that
problem. Later it turned out that one can replace the hyperbola by an arbitrary
curve, and the local formula inversion still exists. Then all manifolds of lines in
general position have been found for which such a formula exists and the role
of tangency-intersection conditions in their description has been clarified. That
line of research has been completed by describing the general form of operator
x on full manifolds of rational curves. It turned out that many facts of the har-
monic analysis on SL(2; ) may be transferred to such a non-homogeneous
situation.

In [17] it has been shown that the problem about the Plancherel formula
for any complex semi-simple Lie groups is also reduced to a problem of inte-
gral geometry. For each such group G one considers the manifold of orispheres,
i.e. two-sided shifts of a maximal unipotent subgroup. The problem is to re-
construct a function on the group if its integrals over orispheres are given. L. M.
Gelfand has repeatedly formulated the problem of finding an inversion formula
for some families of submanifolds, including, in particular, families of orispheres
on complex semi-simple Lie groups. In the paper [5] which we have already
cited above, a differential operator x, is constructred taking an integral f over
planes of dimension p into a closed form on the manifold of planes going through
the point w. For p = 1 it is described in section 1. In the general case one obtains
different inversion formulas by integrating that form %, f over different cycles.
For the group SL(n, €) orispheres can be interpreted as planes and the operator
% . provides an inversion formula for the family of orispheres.

In the case of other groups orispheres are in fact curved. Recently, the author
has been able [18] to construct operator x for curved submanifolds which made
it possible in particular, to derive an inversion formula for orispheres on any
group from the general results of integral geometry.

At the same time one obtains inversion formulas for families of submanifolds
that are not related to groups. The main point here is the existance of a remar-
kable generalised conformal structure on the manifold of orispheres for any
semi-simple Lie group. As in section 4 we construct incidence cones VE Cc Tti
on the manifold of orispheres = by considering submanifolds of orispheres
Sg C E going through g € G and by taking for each & € = the union of tangent
planes o, to Sg for Sg 5 &. Those cones turn out to have a very simple structure
which is in many respects general for all groups.

Namely, there is a family Z, of one-dimensional subspaces on Vs lying in the
same two-dimensional subspace; for each line from 21 there is a one-parameter
family of two-dimensional subspaces Z, going through it and lying in the same
3-dimensional subspace etc. For each k-dimensional subspace from the family
b k there is a one-dimensional family of (k + 1)-dimensional subspace containing
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it and lying in a (kK + 2)-dimensional subspace, and so on up to dimension Sg.
The union of those subspace gives the cone VE.

A further analysis shows that if on a family = of submanifolds E C X the
incidence cones Vs are of that form and if the corresponding conformal structure
is equivalent to a flat one up to the third order, then one can define the operator
» giving an inversion formula. It would be interesting to investigate those struc-
tures and the plane of those among them that correspond to groups. The in-
ductive character of Vt is a geometric expression of the group root structure.

Summarizing, one can say that an important role in integral geometry is played
by generalised conformal structures. In the integrable case one has an incidence
relation between = the manifold of submanifolds Et’ and the (twistor) manifold
X in which Es lie. That incidence relation is conveniently expressed in the lan-
guage of double fibrations

N

where A4 is the manifold of pairs (x, &), x GEt. However, we believe that infinite-
simal language of generalised conformal structures is in a number of questions
more effective. It would be interesting to continue the study of such structures
which ensure the existance of local inversion formulas.

It would also be interesting to investigate parallel constructions in the theory
of non-linear differential equations which have to be connected with the case of
several spectral parameters.
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